
 EaseFilter File System Filter SDK Manual

Introduction

File system filter driver
A file system filter driver intercepts requests targeted at a file system or another file system

filter driver. By intercepting the request before it reaches its intended target, the filter driver

can extend or replace functionality provided by the original target of the request. It is developed

primarily to allow the addition of new functionality beyond what is currently available.

File system monitor filter

File system monitor filter can monitor the file system activities on the fly. With file

system monitor filter you can monitor the file activities on file system level, capture file

open/create/replace, read/write, query/set file attribute/size/time security information,

rename/delete, directory browsing and file close request. You can develop the software

for the following purposes:

 Continuous data protection (CDP).

 Auditing.

 Access log.

 Journaling.

File system control filter

File system control filter can control the file activities, which you can intercept the file

system call, modify its content before or after the request goes down to the file system,

allow/deny/cancel its execution based on the filter rule. You can fully control file

open/create/replace, read/write, query/set file attribute/size/time security information,

rename/delete, directory browsing these Io requests. With file system control filter you

can developer these kinds of software:

 Data protection.

 Security.

The rules to use of file system control filter

To use the file system control filter, you need to follow the following rules, or might

cause the system deadlock.

1. Avoid the re-entrance issue, don’t generate any new I/O request which will cause the

request comes to the control filter handler again.

2. Avoid using any file operations in buffered mode, open any file in the control filter

handler with FILE_FLAG_NO_BUFFERING flag set.

3. Avoid asynchronous procedure calls.

4. Avoid any GUI (user interface) operations.

 EaseFilter File System Filter SDK Manual

File system encryption filter

File system encryption filter provides a comprehensive solution for transparent file level

encryption. It allows developers to create transparent encryption products which it can

encrypt or decrypt file on-the-fly. Our encryption engine uses a strong cryptographic

algorithm called Rijndael (256-bit key), it is a high security algorithm created by Joan

Daemen and Vincent Rijmen (Belgium). Rijndael is the new Advanced Encryption

Standard (AES) chosen by the National Institute of Standards and Technology (NIST).

Supported Platforms
 Windows 10 (32bit, 64bit)

 Windows 8 (32bit, 64bit)

 Windows 2012 Server R2

 Windows 2008 Server R2 (32bit, 64bit)

 Windows 7 (32bit,64bit)

 Windows 2008 Server (32bit, 64bit)

 Windows Vista (32bit,64bit)

 Windows 2003 Server(32bit,64bit)

 Windows XP(32bit,64bit)

Symbol Reference

Structures, Enums

Typedef enum FilterType

{

FILE_SYSTEM_MONITOR = 0,

FILE_SYSTEM_CONTROL = 1,

FILE_SYSTEM_ENCRYPTION = 2,

FILE_SYSTEM_CONTROL_ENCRYPTION = 3,

FILE_SYSTEM_MONITOR_ENCRYPTION = 4,

};

Comments

FILE_SYSTEM_MONITOR filter type is the file system filter

driver which only intercept the file I/O notification after

it was completed.

FILE_SYSTEM_CONTROL filter type is the file system filter

driver which can control the file I/O request’s behaviour

before it goes down to the file system or after it is

completed by the file system.

 EaseFilter File System Filter SDK Manual

FILE_SYSTEM_ENCRYPTION filter type is the file system

filter driver which can encrypt and decrypt the files on-

the-fly.

FILE_SYSTEM_CONTROL_ENCRYPTION filter type includes both

control filter and encryption filter driver.

FILE_SYSTEM_MONITOR_ENCRYPTION filter type includes both

monitor filter and encryption filter driver.

typedef enum MessageType

{

 PRE_CREATE = 0x00000001,

 POST_CREATE = 0x00000002,

 PRE_FASTIO_READ = 0x00000004,

 POST_FASTIO_READ = 0x00000008,

 PRE_CACHE_READ = 0x00000010,

 POST_CACHE_READ = 0x00000020,

 PRE_NOCACHE_READ = 0x00000040,

 POST_NOCACHE_READ = 0x00000080,

 PRE_PAGING_IO_READ = 0x00000100,

 POST_PAGING_IO_READ = 0x00000200,

 PRE_FASTIO_WRITE = 0x00000400,

 POST_FASTIO_WRITE = 0x00000800,

 PRE_CACHE_WRITE = 0x00001000,

 POST_CACHE_WRITE = 0x00002000,

 PRE_NOCACHE_WRITE = 0x00004000,

 POST_NOCACHE_WRITE = 0x00008000,

 PRE_PAGING_IO_WRITE = 0x00010000,

 POST_PAGING_IO_WRITE = 0x00020000,

 PRE_QUERY_INFORMATION = 0x00040000,

 POST_QUERY_INFORMATION = 0x00080000,

 PRE_SET_INFORMATION = 0x00100000,

 POST_SET_INFORMATION = 0x00200000,

 PRE_DIRECTORY = 0x00400000,

 POST_DIRECTORY = 0x00800000,

 PRE_QUERY_SECURITY = 0x01000000,

 POST_QUERY_SECURITY = 0x02000000,

 PRE_SET_SECURITY = 0x04000000,

 POST_SET_SECURITY = 0x08000000,

 PRE_CLEANUP = 0x10000000,

 POST_CLEANUP = 0x20000000,

 PRE_CLOSE = 0x40000000,

 POST_CLOSE = 0x80000000,

};

 EaseFilter File System Filter SDK Manual

Members

PRE_CREATE

PRE_CREATE request is the create I/O request before it goes

down to the file system.

POST_CREATE

POST_CREATE request is the create I/O request after it is

completed by file system.

PRE_FASTIO_READ

PRE_FASTIO_READ is the read I/O request before it goes to

the Cache Manager.

POST_FASTIO_READ

POST_FASTIO_READ is the read I/O request after it comes

back from the Cache Manager.If the data is not in the Cache

Manager,it will return false,and the I/O Manager will

reissue a new request to the file system.

PRE_CACHE_READ

PRE_CACHE_READ is the read I/O request with data cache

before it goes to the Cache Manager.

POST_CACHE_READ

POST_CACHE_READ is the read I/O request after it come back

from Cache Manager.If the data is not in the Cache Manager,

it will trigger a paging I/O read request and load the data

from the storage to the Cache Manager.Normally you will see

the paging I/O read request follows the cache read request.

PRE_NONCACHE_READ

PRE_NONCACHE_READ is the read I/O request without data

cache before it goes to the file system.

POST_NONCACHE_READ

POST_NONCACHE_READ is the read I/O request after it comes

back from the file system.The data won’t cache in the Cache

Manager. You will see the noncache read request if you open

a file and specify FILE_NO_INTERMEDIATE_BUFFERING.

 EaseFilter File System Filter SDK Manual

PRE_PAGING_IO_READ

PRE_PAGING_IO_READ is the read I/O request before it goes

to the file system.It is initiated by the virtual memory

system in order to satisfy the needs of the demand paging

system.

POST_PAGING_IO_READ

POST_PAGING_IO_READ is the read I/O request after it come

back from file system.For memory mapping file open you will

see this request without the cache read request, for

example open file with notepad application.

PRE_FASTIO_WRITE

PRE_FASTIO_WRITE is the write I/O request before it writes

to the Cache Manager.

POST_FASTIO_WRITE

POST_FASTIO_WRITE is the write I/O request after it wrote

to the Cache Manager. Normally you will see the paging I/O

write request follows the fast I/O write request.

PRE_CACHE_WRITE

PRE_CACHE_WRITE is the write I/O request with data cache

before it writes to the Cache Manager.

POST_CACHE_WRITE

POST_CACHE_WRITE is the write I/O request after it wrote to

the Cache Manager. Normally you will see the paging I/O

write request follows the cache write request.

PRE_NONCACHE_WRITE

PRE_NONCACHE_WRITE is the write I/O request without data

cache before it wrote to the storage by the file system.

POST_NONCACHE_WRITE

POST_NONCACHE_WRITE is the write I/O request after it comes

back from the file system.The data won’t cache in the Cache

Manager. You will see the noncache write request if you

open a file and specify FILE_NO_INTERMEDIATE_BUFFERING.

PRE_PAGING_IO_WRITE

 EaseFilter File System Filter SDK Manual

PRE_PAGING_IO_WRITE is the write I/O request on behalf of

the Virtual Manager system before it writes to the storage

by the file system.

POST_PAGING_IO_WRITE

POST_PAGING_IO_WRITE is the write I/O request after it come

back from file system.

PRE_QUERY_INFORMATION

PRE_QUERY_INFORMATION is the I/O request which retrives

information for a given file before it goese down to the

file system. The file information class tells the type of

the information will be returned.

POST_QUERY_INFORMATION

POST_QUERY_INFORMATION is the I/O request which retrives

information for a given file after it comes back from the

file system. The file information class tells the type of

the information will be returned.

PRE_SET_INFORMATION

PRE_SET_INFORMATION is the I/O request which set

information for a given file before it goese down to the

file system. The file information class tells the type of

the information will be set.

POST_SET_INFORMATION

POST_SET_INFORMATION is the I/O request which set

information for a given file after it comes back from the

file system. The file information class tells the type of

the information will be set.

PRE_DIRECTORY

PRE_DIRECTORY is the folder browsing I/O request before it

goese down to the file system. It retrive various kinds of

information about files in the given directory. The

information class tells the type of information will be

returned.

POST_DIRECTORY

 EaseFilter File System Filter SDK Manual

POST_DIRECTORY is the folder browsing I/O request after it

comes back from the file system. It retrive various kinds

of information about files in the given directory. The

information class tells the type of information will be

returned.

PRE_QUERY_SECURITY

PRE_QUERY_SECURITY is the query security request before it

goes down to the file system. It will retrive the security

descriptor for a given file. The security information tells

the the type of the security descriptor.

POST_QUERY_SECURITY

POST_QUERY_SECURITY is the query security request after it

comes back from the file system. It will retrive the

security descriptor for a given file. The security

information tells the the type of the security descriptor.

PRE_SET_SECURITY

PRE_SET_SECURITY is the set security request before it goes

down to the file system. It will set the security state for

a given file. The security information tells the the type

of the security descriptor.

POST_SET_SECURITY

POST_SET_SECURITY is the set security request after it

comes back from the file system. It will set the security

state for a given file. The security information tells the

the type of the security descriptor.

PRE_CLEANUP

PRE_CLEANUP is the cleanup request before it goes down to

the file system. It indicates that the handle reference

count on a file object has reached zero. In other words,

all handles to the file object have been closed. Often it

is sent when a user-mode application has called the

Microsoft Win32 CloseHandle function on the last

outstanding handle to a file object.

POST_CLEANUP

POST_QUERY_SECURITY is the cleanup request after it comes

back from the file system.

 EaseFilter File System Filter SDK Manual

PRE_CLOSE

PRE_CLOSE is the close request before it goese down to the

file system. It indicates that the reference count on a

file object has reached zero, usually because a file system

driver or other kernel-mode component has called

ObDereferenceObject on the file object. This request

normally follows a cleanup request. However, this does not

necessarily mean that the close request will be received

immediately after the cleanup request.

POST_CLOSE

POST_CLOSE is the close request after it comes back from

the file system.

Comments

Register the I/O request with the combination of the request

type you want to monitor. For file system monitor filter, only

post requests are affected.

typedef enum AccessFlag
{

 EXCLUDE_FILTER_RULE = 0X00000000,

 EXCLUDE_FILE_ACCESS = 0x00000001,

 REPARSE_FILE_OPEN = 0x00000002,

 HIDE_FILES_IN_DIRECTORY_BROWSING = 0x00000004,

 FILE_ENCRYPTION_RULE = 0x00000008,

 ALLOW_OPEN_WTIH_ACCESS_SYSTEM_SECURITY = 0x00000010,

 ALLOW_OPEN_WITH_READ_ACCESS = 0x00000020,

 ALLOW_OPEN_WITH_WRITE_ACCESS = 0x00000040,

 ALLOW_OPEN_WITH_CREATE_OR_OVERWRITE_ACCESS = 0x00000080,

 ALLOW_OPEN_WITH_DELETE_ACCESS = 0x00000100,

 ALLOW_READ_ACCESS = 0x00000200,

 ALLOW_WRITE_ACCESS = 0x00000400,

 ALLOW_QUERY_INFORMATION_ACCESS = 0x00000800,

 ALLOW_SET_INFORMATION = 0x00001000,

 ALLOW_FILE_RENAME = 0x00002000,

 ALLOW_FILE_DELETE = 0x00004000,

 ALLOW_FILE_SIZE_CHANGE = 0x00008000,

 ALLOW_QUERY_SECURITY_ACCESS = 0x00010000,

 ALLOW_SET_SECURITY_ACCESS = 0x00020000,

 ALLOW_DIRECTORY_LIST_ACCESS = 0x00040000,

 ALLOW_FILE_ACCESS_FROM_NETWORK = 0x00080000,

 ALLOW_MAX_RIGHT_ACCESS = 0xfffffff0,

 EaseFilter File System Filter SDK Manual

};

Members

EXCLUDE_FILTER_RULE

EXCLUDE_FILTER_RULE is the rule which bypass the files

matched the FilterMask. It can`t combine to use with

the other access flags. If a file matchs the exclude

filter rule,the filter will bypass this file,you won`t

get any Io request notification or control. If a file

matches both the exclude filter rule and monitor rule,

the exclude filter rule will be applied.

EXCLUDE_FILE_ACCESS

EXCLUDE_FILE_ACCESS is the flag indicates the filter

will deny the access to the files which match the

FilterMask.

REPARSE_FILE_OPEN

REPARSE_FILE_OPEN is the rule which reparses the file

matched the FilterMask open to the other files which

match the ReparseMask.

Example:

AddFilterRule(REPARSE_FILE_OPEN,L"c:\\test*",L"d:\\repar
se*");

All the open request to the files in the folder

c:\test will reparse to the files in the folder

d:\reparse.

HIDE_FILES_IN_DIRECTORY_BROWSING

HIDE_FILES_IN_DIRECTORY_BROWSING is the flag let you hide

the files in the managed folder when it matches the mask.

Example:

AddFilterRule(ALLOW_MAX_RIGHT_ACCESS|HIDE_FILES_IN_DIRECTORY_B
ROWSING,L"c:\\test*",L"*.txt");

When you browse the folder c:\test, all the files with

extension “.txt” will be hidden.

 EaseFilter File System Filter SDK Manual

ENCRYPTION_FILTER_RULE

ENCRYPTION_FILTER_RULE is the flag indicates the

filter will encrypt the new created files which match

the FilterMask.If the other flag were set, this flag

is automatically enabled.

ALLOW_OPEN_WTIH_ACCESS_SYSTEM_SECURITY

ALLOW_OPEN_WTIH_ACCESS_SYSTEM_SECURITY is the flag

indicates if you can open the file with the desired

access with the ACCESS_SYSTEM_SECURITY set.

ALLOW_OPEN_WITH_READ_ACCESS

ALLOW_OPEN_WITH_READ_ACCESS is the flag indicates if

you can open the file with read access.

ALLOW_OPEN_WITH_WRITE_ACCESS

ALLOW_OPEN_WITH_WRITE_ACCESS is the flag indicates if

you can open the file with write access.

ALLOW_OPEN_WITH_CREATE_OR_OVERWRITE_ACCESS

ALLOW_OPEN_WITH_CREATE_OR_OVERWRITE_ACCESS is the flag

indicates if you can open with create a new file or

overwrite the exist file.

ALLOW_OPEN_WITH_DELETE_ACCESS

ALLOW_OPEN_WITH_DELETE_ACCESS is the flag indicates if

you can open the file for deletion or rename access.

ALLOW_READ_ACCESS

ALLOW_READ_ACCESS is the flag indicates if you have

the permission to read the file.

ALLOW_WRITE_ACCESS

ALLOW_WRITE_ACCESS is the flag indicates if you have

the permission to write the file.

ALLOW_QUERY_INFORMATION_ACCESS

 EaseFilter File System Filter SDK Manual

ALLOW_QUERY_INFORMATION_ACCESS is the flag indicates

if you have the permission to query the file

information.

ALLOW_SET_INFORMATION

ALLOW_SET_INFORMATION is the flag indicates if you

have the permission to set the file information.

ALLOW_FILE_RENAME

ALLOW_FILE_RENAME is the flag indicates if you have

the permission to rename the file. If the flag

ALLOW_SET_INFORMATION is unset, the rename is blocked

automatically.

ALLOW_FILE_DELETE

ALLOW_FILE_DELETE is the flag indicates if you have

the permission to delete the file. If the flag

ALLOW_SET_INFORMATION is unset, the deletion is

blocked automatically.

ALLOW_FILE_SIZE_CHANGE

ALLOW_FILE_SIZE_CHANGE is the flag indicates if you

have the permission to change the file size. If the

flag ALLOW_SET_INFORMATION is unset, the file size

chage is blocked automatically.

ALLOW_QUERY_SECURITY_ACCESS

ALLOW_QUERY_SECURITY_ACCESS is the flag indicates if

you have the permission to query the file security.

ALLOW_SET_SECURITY_ACCESS

ALLOW_SET_SECURITY_ACCESS is the flag indicates if you

have the permission to set the file security.

ALLOW_DIRECTORY_LIST_ACCESS

ALLOW_DIRECTORY_LIST_ACCESS is the flag indicates if

you have the permission to browse the directory.

ALLOW_FILE_ACCESS_FROM_NETWORK

 EaseFilter File System Filter SDK Manual

ALLOW_FILE_ACCESS_FROM_NETWORK is the flag indicates

if you have the permission to access the files from

the network server.

ALLOW_MAX_RIGHT_ACCESS

ALLOW_MAX_RIGHT_ACCESS indicates if you have the

maximum access right to the file.

Comments

A accessFlag is associated to a filter rule, used to

control the access to the files matched the FilterMask.

Typedef enum FilterStatus
{

 FILTER_MESSAGE_IS_DIRTY = 0x00000001,

 FILTER_COMPLETE_PRE_OPERATION = 0x00000002,

 FILTER_DATA_BUFFER_IS_UPDATED = 0x00000004,

};

Members

FILTER_MESSAGE_IS_DIRTY

FILTER_MESSAGE_IS_DIRTY is the flag indicates the

reply message was modified and needs to be processed

in filter driver. Set this flag if you change the

reply message.

FILTER_COMPLETE_PRE_OPERATION

FILTER_COMPLETE_PRE_OPERATION is the flag indicates

the filter needs to complete this pre I/O request.Only

set this flag with pre operation request when you

don`t want the request goes down to the file system.

FILTER_DATA_BUFFER_IS_UPDATED

FILTER_DATA_BUFFER_IS_UPDATED is the flag indicates

the data buffer of the reply message was updated.The

filter will process this data buffer.

Comments

 EaseFilter File System Filter SDK Manual

FitlerStatus is the status code which returns to the filter

driver,it is for control filter only.It instructs the

filter what process needs to be done.

typedef struct _MESSAGE_SEND_DATA
{

 ULONG MessageId;

 PVOID FileObject;

 PVOID FsContext;

 ULONG MessageType;

 ULONG ProcessId;

 ULONG ThreadId;

 LONGLONG Offset;

 ULONG Length;

 LONGLONG FileSize;

 LONGLONG TransactionTime;

 LONGLONG CreationTime;

 LONGLONG LastAccessTime;

 LONGLONG LastWriteTime;

 ULONG FileAttributes;

 ULONG DesiredAccess;

 ULONG Disposition;

 ULONG ShareAccess;

 ULONG CreateOptions;

 ULONG CreateStatus;

ULONG InfoClass;

 ULONG Status;

 ULONG FileNameLength;

 WCHAR FileName[MAX_FILE_NAME_LENGTH];

 ULONG SidLength;

 UCHAR Sid[MAX_SID_LENGTH];

 ULONG DataBufferLength;

 UCHAR DataBuffer[MAX_MESSAGE_SIZE];

 ULONG VerificationNumber;

} MESSAGE_SEND_DATA, *PMESSAGE_SEND_DATA;

Members

MessageId

 This is the sequential number of the transaction.

FileObject

The FileObject is the pointer to the file object,it is

a unique number to every file open.

 EaseFilter File System Filter SDK Manual

FsContext

The FsContext is the pointer to the file context,it is

unique number to the same file.

MessageType

MessageType is the I/O request type for this

transaction.

ProcessId

The ProcessId is the id of the process associated with

the thread that originally requested the I/O operation.

ThreadId

The ThreadId is the id of thread which requested the

I/O operation.

Offset

 The Offset is the read or write offset.

Length

 The Length is the length for read or write.

FileSize

The FileSize is the size of the file for this I/O

request.

TransactionTime

 The transaction time in UTC format of the request.

CreationTime

The creation time in UTC format of the file we are

requesting.

LastAccessTime

The last access time in UTC format of the file we are

requesting.

LastWriteTime

The last write time in UTC format of the file we are

requesting.

FileAttributes

 The file attributes of the file we are requesting.

DesiredAccess

 EaseFilter File System Filter SDK Manual

The DesiredAccess is the request access to the file

for the Create I/O request,which can be summarized as

read,write,both or neither zero.For more information

reference the Windows API CreateFile.

Disposition

The disposition is the action to take on a file that

exist or does not exist. For more information

reference the Windows API CreateFile.

SharedAccess

The SharedAccess is the requested sharing mode of the

file which can be read,write,both,delete,all of

these,or none. For more information reference the

Windows API CreateFile.

CreateOptions

The CreateOptions specifies the options to be applied

when creating or opening the file. For more

information reference the Windows API CreateFile.

CreateStatus

The CreateStatus is the status after the Create I/O

request completed.It could be the one of the following

values:

FILE_SUPERSEDED = 0x00000000,

 FILE_OPENED = 0x00000001,

 FILE_CREATED = 0x00000002,

 FILE_OVERWRITTEN = 0x00000003,

 FILE_EXISTS = 0x00000004,

FILE_DOES_NOT_EXIST = 0x00000005,

InfoClass

The infoClss is the information class for query/set

information I/O request, or directory browsing request.

For query/set security request, it is the security

information.For more information reference the windows

Filter API FltQueryInformationFile,

FltQueryDirectoryFile,FltQuerySecurityObject.

Status

The Status is the I/O status which returns from the

file system,indicates if the I/O request succeeded.It

is only meaningful to the post I/O requests.

FileNameLength

 EaseFilter File System Filter SDK Manual

The file name length in byte of the file we are

requesting.

FileName

 The file name we are requesting.

SidLength

 The length of the security identifier buffer in byte.

Sid

 The buffer of the security identifier data.

DataBufferLength

The data buffer length for read, write, security,

information,directory I/O requests.

DataBuffer

The The data buffer length for read, write, security,

information, directory I/O requests.

VerificationNumber

The verification number to verify the data structure

integerity.

Comments

The MESSAGE_SEND_DATA structure is used to transfer the

data from kernel to the user mode application. It includes

all the information needed for the user.

typedef struct _MESSAGE_REPLY_DATA
{

 ULONG MessageId;

 ULONG MessageType;

 ULONG ReturnStatus;

 ULONG FilterStatus;

 ULONG DataBufferLength;

 UCHAR DataBuffer[MAX_MESSAGE_SIZE];

} MESSAGE_REPLY_DATA, *PMESSAGE_REPLY_DATA;

Members

MessageId

 This is the sequential number of the transaction.

 EaseFilter File System Filter SDK Manual

MessageType

MessageType is the I/O request type for this

transaction. Reference MessageType enum type.

ReturnStatus

The ReturnStatus is the I/O status which returns to

filter driver, and filter will return this status to

the user application for the request.

FilterStatus

The FitlerStatus is the status code which returns to

the filter driver,it instructs the filter what process

needs to be done. For more information reference the

FilterStatus enum.

DataBufferLength

The data buffer length which returns to the filter

driver.

DataBuffer

 The data buffer which returns to the filter driver.

Comments

MESSAGE_REPLY_DATA is only for control filter, when it

needs to change the data or status of the I/O request. To

update the reply data buffer, you must understand the

format of the buffer, incorrect data could cause your

system unfunctional, even crash.

Types

typedef BOOL (__stdcall *Proto_Message_Callback)(

 IN PMESSAGE_SEND_DATA pSendMessage,

 IN OUT PMESSAGE_REPLY_DATA pReplyMessage)

Comments

This is the proto type of the message callback function.

The function will be called when the registed I/O requests

match the filter rule. The second parameter “pReplyMessage”

is always NULL for the file system monitor filter.

 EaseFilter File System Filter SDK Manual

typedef VOID (__stdcall *Proto_Disconnect_Callback)()

Comments

This is the proto type of disconnect function.The function

will be called when the connection to the filter is

disconnected.

Exported API

BOOL

InstallDriver()

Return Value

 Return true if it succeeds, else return false.

Comments

Install the EaseFilter driver to the system.To install

the driver you need the administrator permission.

BOOL

UnInstallDriver()

Return Value

 Return true if it succeeds, else return false.

Comments

UnInstall the EaseFilter driver from the system. To

UnInstall the driver you need the administrator

permission.

BOOL

SetRegistrationKey(
IN WCHAR* RegisterName,

IN WCHAR* RegisterKey)

Parameters

RegisterName

 EaseFilter File System Filter SDK Manual

Your register name.

RegisterKey

Your register key.

Return Value

 Return true if it succeeds, else return false.

Comments

You have to set the registration key before you can start

the filter.

BOOL

RegisterMessageCallback(
 ULONG ThreadCount,

 Proto_Message_Callback MessageCallback,

 Proto_Disconnect_Callback DisconnectCallback)

Parameters

ThreadCount

The number of threads used for connection to the

filter.

MessageCallback

The message callback function for the registered I/O

requests.

DisconnectCallback

The disconnect callback function when the connection

is disconnected.

Return Value

 Return true if it succeeds, else return false.

Comments

RegisterMessageCallback is the first API you need to call,

it is the API start the filter and create the connection to

the filter.

VOID

 EaseFilter File System Filter SDK Manual

Disconnect()

Comments

Disconnect is the API when you want to stop filter and

filter connection.

BOOL

GetLastErrorMessage(WCHAR* Buffer, PULONG BufferLength)

Parameters

Buffer

This the pointer of the buffer to receive the last

error message.

BufferLength

The length of the buffer.

Return Value

 Return true if it succeeds,else return false if the

buffer length is not big enough to contain the message,and

the BufferLength is set with the right size needed.

Comments

This API is called right after if the other API is failed.

It will return the error message.

BOOL

ResetConfigData();

Return Value

 Return true if it succeeds, else return false.

Comments

ResetConfigData is the API reset all the configuration of

the filter, it will clear up all the setting includes the

filter rules.

BOOL

 EaseFilter File System Filter SDK Manual

SetFilterType(ULONG FilterType)

Parameters

FilterType

The type of the filter you want to set. There are

FILE_SYSTEM_MONITOR filter and FILE_SYSTEM_CONTROL

filter.

Return Value

 Return true if it succeeds, else return false.

Comments

The default filter type is file system monitor filter.

BOOL

SetConnectionTimeout(ULONG TimeOutInSeconds)

Parameters

TimeOutInSeconds

The value of the filter wait time out.

Return Value

 Return true if it succeeds, else return false.

Comments

This is the maixmum time for the filter driver wait for the

response from user mode, the user mode application should

return as fast as possible, or it will block the system

requests.Set it bigger if your application needs to process

with more time.

BOOL

AddFilterRule(
IN ULONG* AccessFlag,

 IN WCHAR* FilterMask,

 IN WCHAR* FilterMask2,

IN ULONG KeyLength,

 IN UCHAR* Key)

 EaseFilter File System Filter SDK Manual

Parameters

AccessFlag

The AccessFlag of this filter rule.

FilterMask

The FilterMask set the monitor folder or files.The

mask is dos format,it can include wild character ‘*’or

‘?’. For example:

 C:\test*txt

The filter only monitor the files end with ‘txt’ in

the folder c:\test.

FilterMask2

If the AccessFlag doesn’t have REPARSE_FILE_OPEN or

HIDE_FILES_IN_DIRECTORY_BROWSING enabled.It is the

exception filter mask.

For example:

FilterMask = *.txt

FilterMask2 = c:\windows*

Here all the file with extension .txt will be

processed by the filter driver except the files in

folder c:\windows and its subfolders.

If the AccessFlag has REPARSE_FILE_OPEN enabled, the

FilterMask2 is the reparse folder mask,it can include

the wild character, but it must match the wild

character in FilterMask.

For example:

FilterMask = c:\test*txt

FilterMask2 = d:\reparse*doc

If you open file c:\test\MyTest.txt, it will reparse

to the file d:\reparse\MyTest.doc

If the AccessFlag has HIDE_FILES_IN_DIRECTORY_BROWSING

enabled, the FilterMask2 is the filter mask for the

files to be hidden.

For example:

FilterMask = c:\hideFilesTest*

 EaseFilter File System Filter SDK Manual

FilterMask2 = *.doc

If you open folder c:\hideFilesTest, all the files

with extension .doc won’t show up in the folder.

KeyLength

The length of the encryption key,if AccessFlag

includes encryption filter rule,it has to set this

length to 16,24 or 32.

Key

The encryption key for encryption filter rule if it

was set.

Return Value

 Return true if it succeeds, else return false.

Comments

AddFilterRule is the API to setup the filter rule,You can

set up multiple filte rules, the FilterMask must be

different, if the FilterMask is the same, it will overwrite

the previous one.

BOOL

RemoveFilterRule(WCHAR* FilterMask);

Parameters

FilterMask

The FilterMask associated to the filter rule.

Return Value

 Return true if it succeeds, else return false.

Comments

You can remove the filter rule which was set by

AddFilterRule API.

BOOL

 EaseFilter File System Filter SDK Manual

AddIncludedProcessId(ULONG ProcessId)

Parameters

ProcessId

The process Id you want to be included by filter.

Return Value

 Return true if it succeeds, else return false.

Comments

This API let the filter dirver only intercept the I/O for

the included processes,discard all other I/O from other

processes, you can add multiple process Id.

BOOL

RemoveExcludeProcessId(ULONG ProcessId)

Parameters

ProcessId

The process Id you want to remove which set by

AddIncludedProcessId API.

Return Value

 Return true if it succeeds, else return false.

Comments

This API removes the included process Id from filter.

BOOL

AddExcludedProcessId(ULONG ProcessId)

Parameters

ProcessId

The process Id you want to be excluded by filter.

Return Value

 Return true if it succeeds, else return false.

Comments

 EaseFilter File System Filter SDK Manual

This API let you can bypass the filter for specific

processes, you can add multiple process Id.

BOOL

RemoveExcludeProcessId(ULONG ProcessId)

Parameters

ProcessId

The process Id you want to remove which set by

AddExcludedProcessId API.

Return Value

 Return true if it succeeds, else return false.

Comments

This API removes the excluded process Id from filter.

BOOL

AddProtectedProcessId(ULONG ProcessId)

Parameters

ProcessId

The process Id you want to be protected by filter.

Return Value

 Return true if it succeeds, else return false.

Comments

This API can prevent the process being terminated, you can

add multiple process Id, this API is supported in OS vista

or later versions.

BOOL

RemoveProtectedProcessId(ULONG ProcessId)

Parameters

ProcessId

 EaseFilter File System Filter SDK Manual

The process Id you want to remove which set by

AddProtectedProcessId API.

Return Value

 Return true if it succeeds, else return false.

Comments

This API removes the protected procss Id.

BOOL

RegisterIoRequest(ULONG RequestRegistration)

Parameters

RequestRegistration

The RequestRegistration is the bit combination of the

request type.

Return Value

 Return true if it succeeds, else return false.

Comments

Register the I/O requests which you want to monitor.

For File_SYSTEM_MONITOR filter, only post I/O requests

registration are affected, since it only can get

notification after the request was completed by file

system.

For FILE_SYSTEM_CONTROL filter you can register both

pre and post reqeusts. If you want to deny, cancel or

return with your own data instead of going down to the

file system, you need to register the pre request.

For some post I/O requests, you can’t cancel or deny

it, for example Create, Set information,Set security,

Write requests.

BOOL

GetFileHandleInFilter(WCHAR* FileName, ULONG DesiredAccess, Handle*

FileHandle);

Parameters

 EaseFilter File System Filter SDK Manual

FileName

The full path of the file which you want to open.

DesiredAccess

The requested access to the file or device, which can

be summarized as read, write, both or neither zero).

FileHandle

The pointer to the file handle which will receive the

file handle after the file was opened.

Return Value

 Return true if it succeeds, else return false.

Comments

Use this API to open the file,it will bypass the

filter, avoid reentrant issue.It also will bypass the

security check.Close the handle with CloseHandle win32

API.

BOOL

AESEncryptFile(
 IN WCHAR* FileName,

IN ULONG KeyLength,

 IN UCHAR* Key,

IN ULONG IVLength,

 IN UCHAR* IV,

IN BOOL AddIVTag)

Parameters

FileName

The file name to be encrypted.

KeyLength

The encryption key length,it has to be

16(128bits),24(192bits) or 32(256bits).

Key

The encryption key,it is an unsigned char array with

KeyLength size.

IVLength

 EaseFilter File System Filter SDK Manual

The initial vector length,if it is 0, the sysem will

allocate an unique IV for the file.

IV

The initial vector,when IVLenght is 0, it sets to NULL.

AddIVTag

If it is true,it will add the IV to the encrypted file

as reparse point tag,then the encryption filter driver

can recognize this encrypted file.

Return Value

 Return true if it succeeds, else return false.

Comments

AESEncryptfile is the API to encrypt file file with AES

encryption cryptographic algorithm.

BOOL

AESDecryptFile(
 IN WCHAR* FileName,

IN ULONG KeyLength,

 IN UCHAR* Key,

IN ULONG IVLength,

 IN UCHAR* IV)

Parameters

FileName

The file name to be decrypted.

KeyLength

The encryption key length,it has to be

16(128bits),24(192bits) or 32(256bits).

Key

The encryption key,it is an unsigned char array with

KeyLength size.

IVLength

The initial vector length,if the encrypted file

already has IVTag,it will use the IV tag instead of

the pass in IV, if the encrypted file doesn’t set the

IV tag,then the IVLength can’t be 0, and IV can’t be

NULL.

 EaseFilter File System Filter SDK Manual

IV

The initial vector,when the encrypted file doesn’t set

IV tag, the IV can’t be NULL, or it can be NULL.

Return Value

 Return true if it succeeds, else return false.

Comments

AESDecryptfile is the API to decrypt file file with AES

encryption cryptographic algorithm.

BOOL

AddIVTag(
 IN WCHAR* FileName,

IN ULONG IVLength,

 IN UCHAR* IV)

Parameters

FileName

The file name was encrypted.

IVLength

The initial vector length.

IV

The initial vector.

Return Value

 Return true if it succeeds, else return false.

Comments

AddIVTag is the API to add the IV tag to the encrypted file

if it doesn’t have the iv tag set, or it will return false.

BOOL

GetIVTag(
 IN WCHAR* FileName,

IN Out ULONG* IVLength,

 IN out UCHAR* IV)

Parameters

 EaseFilter File System Filter SDK Manual

FileName

The file name was encrypted.

IVLength

The pointer to the initial vector length,the iv length

always is 16,it has to be 16,it will return 0 if the

file is not encrypted.

IV

The pointer to the buffer to receive the initial

vector.

Return Value

 Return true if it succeeds, else return false.

Comments

GetIVTag is the API to get the IV tag from the encrypted

file if it has the iv tag set, or IVLength will return 0.

BOOL

DeleteIVTag(
 IN WCHAR* FileName)

Parameters

FileName

The file name was encrypted.

Return Value

 Return true if it succeeds, else return false.

Comments

GetIVTag is the API to delete the IV tag from the encrypted

file if it has the iv tag set, or it will return true.

How to use

The components
The EaseFilter file system filter SDK includes two components (EaseFlt.sys and FilterAPI.dll), The

EaseFlt.sys and FilterAPI.dll are different for 32bit and 64bit windows system. EaseFlt.sys is the

 EaseFilter File System Filter SDK Manual

file system filter driver which implements all the functionalities in the file system level.

FilterAPI.dll is a wrapper DLL which exports the API to the user mode applications.

To check the binary is 32 bit or 64 bit you can right click file and go to the property, then go to

the “Details” tag and check the “file description” section .

Set up the filter
Install the filter driver with InstallDriver() method if the driver has not been installed yet. After

filter driver was installed, the filter was loaded, if not you can load the filter with command

“Fltmc load EaseFlt” in dos prompt. To remove the filter driver from the system, call

UninstallDriver() method.

Start the filter
1. Activate the filter with API SetRegistrationKey(). You can request the trial license key

with the link: http://www.easefilter.com/Order.htm or email us info@easefilter.com

2. After register the callback function with API RegisterMessageCallback, filter is started.

BOOL ret = RegisterMessageCallback(FilterConnectionThreadsCount, MessageCallback,

DisconnectCallback);

3. Setup the filter configuration after filter was started. First select the filter type, then add

filter rule and register the I/O request:

BOOL ret = SetFilterType(FILE_SYSTEM_MONITOR);

BOOL ret = AddFilterRule(L”C:\\MyMonitorFolder*”);

BOOL ret = RegisterIORequest(POST_CREATE|POST_CLEANUP);

We provide C++ example and C# example to demonstrate how to use the EaseFilter File System

Monitor and Control Filter.

C++ Example
Copy the correct version (32bit or 64bit) EaseFlt.sys , FilterAPI.DLL ,FilterAPI.h and FilterAPI.lib

to your folder. FilterAPI.h file includes all the functions and structures used for connecting to

the filter driver. WinDataStructures.h file is part of the structures of windows API which is used

in the example, for more structures please reference Microsoft MSDN website.

For monitor filter, it will only display the file system call messages which include process Id,

Thread Id, file name, user name, file system I/O type , etc.

For Control filter, the filter will block and wait for the response if that I/O was registered, so it is

better handle this request as soon as possible, or it will block the system call.

http://www.easefilter.com/Order.htm
mailto:info@easevault.com

 EaseFilter File System Filter SDK Manual

C# Example
Copy the correct version (32bit or 64bit) EaseFlt.sys , FilterAPI.DLL and ,EaseFilter.cs to your

folder. EaseFilter.cs has the structures and APIs used for connecting to the filter driver.

	Introduction
	File system filter driver
	File system monitor filter
	File system control filter
	The rules to use of file system control filter
	File system encryption filter

	Supported Platforms

	Symbol Reference
	Structures, Enums
	Typedef enum FilterType
	typedef enum MessageType
	typedef enum AccessFlag
	Typedef enum FilterStatus
	typedef struct _MESSAGE_SEND_DATA
	typedef struct _MESSAGE_REPLY_DATA

	Types
	typedef BOOL (__stdcall *Proto_Message_Callback)(
	typedef VOID (__stdcall *Proto_Disconnect_Callback)()

	Exported API
	InstallDriver()
	UnInstallDriver()
	SetRegistrationKey(
	RegisterMessageCallback(
	Disconnect()
	GetLastErrorMessage(WCHAR* Buffer, PULONG BufferLength)
	ResetConfigData();
	SetFilterType(ULONG FilterType)
	SetConnectionTimeout(ULONG TimeOutInSeconds)
	AddFilterRule(
	RemoveFilterRule(WCHAR* FilterMask);
	AddIncludedProcessId(ULONG ProcessId)
	RemoveExcludeProcessId(ULONG ProcessId)
	AddExcludedProcessId(ULONG ProcessId)
	RemoveExcludeProcessId(ULONG ProcessId)
	AddProtectedProcessId(ULONG ProcessId)
	RemoveProtectedProcessId(ULONG ProcessId)
	RegisterIoRequest(ULONG RequestRegistration)
	GetFileHandleInFilter(WCHAR* FileName, ULONG DesiredAccess, Handle* FileHandle);
	AESEncryptFile(
	AESDecryptFile(
	AddIVTag(
	GetIVTag(
	DeleteIVTag(

	How to use
	The components
	Set up the filter
	Start the filter
	C++ Example
	C# Example

